Schisandrin B-induced glutathione antioxidant response and cardioprotection are mediated by reactive oxidant species production in rat hearts.
نویسندگان
چکیده
To investigate the involvement of reactive oxidant species (ROS), presumably arising from cytochrome P-450 (CYP)-catalyzed metabolism of schisandrin B (Sch B), in triggering glutathione antioxidant response, Sch B induced reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and CYP-catalyzed reaction and associated ROS production were examined in rat heart microsomes. Sch B analogs were also studied for comparison. Using rat heart microsomes as a source of CYP, Sch B and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate (an intermediate compound derived from the synthesis of Sch C), were found to serve as co-substrate for the CYP-catalyzed NADPH oxidation reaction, with concomitant production of ROS. The stimulation of CYP-catalyzed NADPH oxidation reaction and/or ROS production by Sch B or Sch C correlated with the increase in mitochondrial reduced glutathione level and protection against ischemia/reperfusion (I/R) injury in rat hearts. The involvement of ROS in Sch B-induced cardioprotection was further confirmed by the suppressive effect produced by N-acetylcysteine or alpha-tocopherol pretreatment. Taken together, these results suggest that Sch B-induced glutathione antioxidant response and cardioprotection may be mediated by ROS arising from CYP-catalyzed reaction.
منابع مشابه
Induction of the Glutathione Antioxidant Response/Glutathione Redox Cycling by Nutraceuticals: Mechanism of Protection against Oxidant-induced Cell Death
The “Mitochondrial Free Radical Theory of Aging” (MFRTA) hypothesizes that reactive oxygen species (ROS) arising from aged and/or defective mitochondria are associated with the pathogenesis of various age-related diseases. The glutathione antioxidant response, in particular glutathione redox cycling, is a critical mechanism for protection against ROS-induced cell death. Over the past few decade...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملDiazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.
Diazoxide, a selective opener of the mitochondrial ATP-sensitive potassium channel, has been shown to elicit tolerance to ischemia in cardiac myocytes and in perfused heart. However, the mechanism of this cardioprotection is poorly understood. Because reactive oxygen species (ROS) are recognized as important intracellular signaling molecules and have been implicated in ischemic preconditioning,...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2010